skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fang, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionWalking is essential for daily life but poses a significant challenge for many individuals with neurological conditions like cerebral palsy (CP), which is the leading cause of childhood walking disability. Although lower-limb exoskeletons show promise in improving walking ability in laboratory and controlled overground settings, it remains unknown whether these benefits translate to real-world environments, where they could have the greatest impact. MethodsThis feasibility study evaluated whether an untethered ankle exoskeleton with an adaptable controller can improve spatiotemporal outcomes in eight individuals with CP after low-frequency exoskeleton-assisted gait training on real-world terrain. ResultsComparing post- and pre-assessment, assisted walking speed increased by 11% and cadence by 7% (p= 0.003;p= 0.006), while unassisted walking speed increased by 8% and cadence by 5% (p= 0.009;p= 0.012). In the post-assessment, assisted walking speed increased by 9% and stride length by 8% relative to unassisted walking (p< 0.001;p< 0.001). Improvements in walking speed were more strongly associated with longer strides than higher cadence (R2= 0.92;R2= 0.68). Muscle activity outcomes, including co-contraction of the soleus and tibialis anterior, did not significantly change after training. DiscussionThese findings highlight the spatiotemporal benefits of an adaptive ankle exoskeleton for individuals with CP in real-world settings after short-term training. This work paves the way for future randomized controlled trials (RCTs) to evaluate the isolated effects of adaptive ankle exoskeletons on gait performance and neuromuscular outcomes in individuals with CP in real-world environments 
    more » « less
  2. In this study, a machine learning based computational approach has been developed to investigate the cation distribution in spinel crystals. The computational approach integrates the construction of datasets consisting of the energies calculated from density functional theory, the training of machine learning models to derive the relationship between system energy and structural features, and atomistic Monte Carlo simulations to sample the thermodynamic equilibrium structures of spinel crystals. It is found that the support vector machine model yields excellent performance in energy predictions based on spinel crystal structures. Furthermore, the developed computational approach has been applied to predict the cation distribution in single spinel MgAl2O4 and MgFe2O4 and double spinel MgAl2-aFeaO4. Agreeing with the available experimental data, the computational approach correctly predicts that the equilibrium degree of inversion of MgAl2O4 increases with temperature, whereas the degree of inversion of MgFe2O4 decreases with temperature. Additionally, it is predicted that the equilibrium occupancy of Mg cations at the tetrahedral and octahedral sites in MgAl2-aFeaO4 could be tuned as a function of chemical composition. Therefore, this study presents a reliable computational approach that can be extended to study the variation of cation distribution with processing temperature and chemical composition in a wide range of complex multi-cation spinel oxides with numerous applications. 
    more » « less
  3. Abstract Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using ‘off-the-shelf’ products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells intoAlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhancedAlloCAR-NKT cells with high yield and purity. We generatedAlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties ofAlloCAR-NKT cells support their potential for clinical translation. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. Literacy assessment is essential for effective literacy instruction and training. However, traditional paper-based literacy assessments are typically decontextualized and may cause stress and anxiety for test takers. In contrast, serious games and game environments allow for the assessment of literacy in more authentic and engaging ways, which has some potential to increase the assessment’s validity and reliability. The primary objective of this study is to examine the feasibility of a novel approach for stealthily assessing literacy skills using games in an intelligent tutoring system (ITS) designed for reading comprehension strategy training. We investigated the degree to which learners’ game performance and enjoyment predicted their scores on standardized reading tests. Amazon Mechanical Turk participants (n = 211) played three games in iSTART and self-reported their level of game enjoyment after each game. Participants also completed the Gates–MacGinitie Reading Test (GMRT), which includes vocabulary knowledge and reading comprehension measures. The results indicated that participants’ performance in each game as well as the combined performance across all three games predicted their literacy skills. However, the relations between game enjoyment and literacy skills varied across games. These findings suggest the potential of leveraging serious games to assess students’ literacy skills and improve the adaptivity of game-based learning environments. 
    more » « less
  5. Abstract BackgroundElectromyography (EMG)-based audiovisual biofeedback systems, developed and tested in research settings to train neuromuscular control in patient populations such as cerebral palsy (CP), have inherent implementation obstacles that may limit their translation to clinical practice. The purpose of this study was to design and validate an alternative, plantar pressure-based biofeedback system for improving ankle plantar flexor recruitment during walking in individuals with CP. MethodsEight individuals with CP (11–18 years old) were recruited to test both an EMG-based and a plantar pressure-based biofeedback system while walking. Ankle plantar flexor muscle recruitment, co-contraction at the ankle, and lower limb kinematics were compared between the two systems and relative to baseline walking. ResultsRelative to baseline walking, both biofeedback systems yielded significant increases in mean soleus (43–58%, p < 0.05), and mean (68–70%, p < 0.05) and peak (71–82%, p < 0.05) medial gastrocnemius activation, with no differences between the two systems and strong relationships for all primary outcome variables (R = 0.89–0.94). Ankle co-contraction significantly increased relative to baseline only with the EMG-based system (52%, p = 0.03). ConclusionThese findings support future research on functional training with this simple, low-cost biofeedback modality. 
    more » « less
  6. null (Ed.)